US009311080B2

a2z United States Patent (10) Patent No.: US 9,311,080 B2
Lior 45) Date of Patent: Apr. 12,2016
(54) INSTRUMENTED FILE DEPLOYMENT 6,314,558 Bl 11/2001 Angel et al.
6,802,054 B2 10/2004 Faraj
. ; 6,944,797 Bl 9/2005 Guthrie et al.
(75) Inventor: Reuven Lior, Yehud (IL) 7503037 B2 3/2009 Banerjoe e al.
. . 7,689,558 B2 3/2010 Rossmann
(73) Assignee: Hewlett Packard Enterprise 8.856.725 B1* 10/2014 Anderson et al. 717/103
Development LP, Houston, TX (US) 2002/0049963 Al 4/2002 Beck et al.
2003/0101089 Al* 5/2003 Chappel GO06Q 10/06
(*) Notice: Subject to any disclaimer, the term of this J006/0101418 AL 52006 B al 705/7.17
: : arsness et al.
%atselg llssixée%deg g; adjusted under 35 2006/0150150 Al* 7/2006 Tiwari et al. 717/110
S.C. 154(b) by 0 days. 2006/0200645 A1* 9/2006 GOGF 8/36
712/1
(21) Appl. No.: 14/418,815 2007/0136394 Al* 6/2007 Cowanetal. 707/203
(22) PCTFiled: Jul. 31,2012 (Continued)
(86) PCT No.: PCT/US2012/048978 OTHER PUBLICATIONS
§ 371 (c)(1), Wiloka et al., “Effectively Automate and Enforce Process Rules and
(2), (4) Date: Jan. 30, 2015 Tasks when Delivering Changes” Oct. 30, 2008.*
(Continued)
(87) PCT Pub. No.: 'WO02014/021843
PCT Pub. Date: Feb. 6,2014
6 p Publ D Primary Examiner — Phillip H Nguyen
. cati ¢
©5) rior Hiblication Tta (74) Attorney, Agent, or Firm — Brooks, Cameron &
US 2015/0154020 A1l Jun. 4, 2015 Huebsch, PLLC
(51) Imt.ClL
GO6F 9/44 (2006.01) (57) ABSTRACT
GO6F 9/445 (2006.01)
GO6F 1136 (2006.01) Systems, methods, and machine-readable and executable
(52) US.CL instructions are provided for instrumented file deployment.
CPC .. GOGF 8/71 (2013.01); GO6F 8/33 (2013.01); Instrumented file deployment can include identifying a num-
GO6F 8/60 (2013.01); GO6F 8/73 (2013.01); ber of changes between a first artifact and a second artifact.
GO6F 11/3624 (2013.01) Instrumented file deployment can also include identifying a
(58) Field of Classification Search number of class names and a number of method names within
CPC ...cccecveee GO6F 8/71; GOG6F 8/33; GOGF 8/60 the second artifact where the changes reside. Instrumented
USPC TSR P 7.17/ 122,110 file deployment can include creating an instrumented file
See application file for complete search history. from the identified number of class names and the identified
. number of method names. Instrumented file deployment can
(56) References Cited include deploying the second artifact and the instrumented
U.S. PATENT DOCUMENTS file together.
5,987,249 A 11/1999 Grossman et al.
6,026,237 A 2/2000 Berry et al. 20 Claims, 3 Drawing Sheets

IDENTIFYING A NUMBER OF CHANGES BETWEENAFIRST | 40
ARTIFACT AND A SECOND ARTIFACT

[DENTIFYING A NUMBER OF CLASS NAMES AND A NUMBER
(F METHOD NAMES WITHIN THE SECOND ARTIFACT
WHERE THE CHANGES RESIDE

~104

CREATING AN INSTRUMENTAL FILE FROM THE IDENTIFIED
NUMBER OF CLASS NAMES AND THE NUMBER OF
METHOD NAMES

~-106

DEPLOYING THE SECOND ARTIFACTAND THE | 49
INSTRUMENTED FILE TOGETHER

US 9,311,080 B2
Page 2

(56)

2008/0104581
2009/0037898

2010/0077380
2011/0161913
2012/0030651
2012/0130906
2012/0317075
2013/0074038
2013/0111441

2013/0174124
2015/0040101

References Cited

U.S. PATENT DOCUMENTS

Al* 5/2008 Clemmetal.
Al* 2/2009 Belisario

Al* 3/2010 Bakeretal.

Al 6/2011 Garimella

Al* 2/2012 Kemmleretal.

Al* 5/2012 Klinker et al.
Al* 12/2012 Pasumarthi et al.
Al* 3/2013 Foxetal. ...

Al* 52013 Clemm ...

Al* 7/2013 Wattersetal.

Al* 2/2015 Rummler

....... 717/162

GO6F 8/20
717/169

....... 717/120

....... 717/124
... 705/301
... 707/626

. T17/122

GOGF 8/72
717/121

....... 717/122
G06Q 10/101

717/113

OTHER PUBLICATIONS

Yu et al., “Traceability for the Maintenance of Secure Software”,
2008.*

Singh, et al., “dynaTrace Continuous APM,” Aug. 2009, Retrieved
from http://static.progressivemediagroup.com/Uploads/Whitepaper/
44/6ba51138-6690-4468-bbc2-202965¢2d28f.pdf, 8 pages.
Unknown., “Instrumenting Code,” Feb. 2004, Retrieved from http://
www.interhack net/projects/vls/vls_ 7. html, 6 pages.

Korean Intellectual Property Office, International Search Report and
Written Opinion, Mar. 29, 2013, 9 pages, Daejeon Metropolitan City,
Republic of Korea.

Supplementary European Search Report, Dec. 1, 2015, European
Patent Application No. 12882067.7, 7 pages.

* cited by examiner

U.S. Patent Apr. 12,2016 Sheet 1 of 3 US 9,311,080 B2

IDENTIFYING ANUMBER OF CHANGES BETWEENAFIRST | 44,
ARTIFACT AND A SECOND ARTIFACT

IDENTIFYING A NUMBER OF CLASS NAMES AND A NUMBER
OF METHOD NAMES WITHIN THE SECOND ARTIFACT ~104
WHERE THE CHANGES RESIDE

CREATING AN INSTRUMENTAL FILE FROM THE IDENTIFIED
NUMBER OF CLASS NAMES AND THE NUMBER OF 106
METHOD NAMES

DEPLOYING THE SECOND ARTIFACTAND THE | 4pg
INSTRUMENTED FILE TOGETHER

Fig. 1

US 9,311,080 B2

Sheet 2 of 3

Apr. 12,2016

U.S. Patent

{7

~~ 888

G

W y3d0TEAI0 C Z "SL
YN GOHLIN 7
VN wmﬁu,w/ o
e
.i!il.i./l
STYNOISSIHON - WYHOONd
QET- T SNOLLYNID T 7 SNHOLINOR
267~
SNOLIYH3E0
T
QAINTNAULSN] 087
PH)
W-ez2 7472 1972
§ m §
SIONVHO ceo lsFONYHD! |S30NVHD
¥ AN AN % NOUYLINIWNELISN]
v < 7 7 <=
_ SHAO AT | 1OVHLLY soe oAy LIOVHIEY] | LoVHiMY
\..“ .\» ﬂ\. a\Ki
N2z 75 705 227 INGWAOTIAI0 ~ 072

U.S. Patent Apr. 12,2016 Sheet 3 of 3 US 9,311,080 B2

364 ~
380 353
; }
PROCESSING MEMORY
RESOURCE RESOURCE
368
354
MACHINE READABLE MEDIUM
" [CHANGES MODULE 356
CLASS AND METHOD
355 A< NAMES MODULE
INSTRUMENTATION MODULE F~1-360
| |DEPLOYMENT MODULE 362

Fig. 3

US 9,311,080 B2

1
INSTRUMENTED FILE DEPLOYMENT

PRIORITY APPLICATION INFORMATION

This application is a National Stage Application under 35
U.S.C. §371 of International Application Number PCT/
US2012/048978, filed Jul. 31, 2012 and published as WO
2014/021843 on Feb. 6,2014, the entire contents of which are
incorporated herein by reference in its entirety.

BACKGROUND

Machine readable instructions (MRI) can be tested and/or
deployed. The testing of MRI can reveal a number of errors.
Errors can cause the MRI to malfunction and/or produce a
number of exceptions.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a flow chart illustrating an example of a method
for instrumented file deployment according to the present
disclosure.

FIG. 2 is a diagram illustrating an example of instrumented
file deployment according to the present disclosure.

FIG. 3 illustrates an example of a computing system
according to the present disclosure.

DETAILED DESCRIPTION

A developer can introduce a number of changes into an
artifact. The changes can create a number of versions of the
artifact. The number changes to an artifact can be traced to the
developer through an instrumented file that can include a
number of class names and/or a number of method names
where the changes took place within the artifact. Being able to
track the changes of an artifact to a developer can allow
information technology (IT) professionals not familiar with
the artifacts to associate a class and/or a method within the
artifact where an error occurred with a developer.

The maturity of a number of artifacts can include a number
of phases. For example, the maturity of a number of artifacts
can include a development phase and/or an operations phase,
among other phases. A development phase can include a
conception of an artifact and/or a creation of an artifact,
among others. An operations phase of an artifact can include
the testing of an artifact and/or the monitoring of an artifact.
As used herein, an artifact can include machine readable
instructions (MRI). For example, an artifact can include
source code and/or compiled code.

In an effort to increase productivity, the different phases
can be merged to try to increase efficiency. For example, an
artifact can be developed and then tested. In testing, it can be
discovered that an artifact includes a number of errors, e.g.,
bugs. An operations professional can identify the error and
send the error to a development team that developed the
artifact. The development team can then determine a devel-
oper that introduced the error into the code. The development
team can then allow the developer to remedy the error. How-
ever, efficiency of remedying an error can be increased if the
operations professional is able to identify the error and the
developer that introduced the error into the artifact as com-
pared to the operations professional having to rely on some-
one else to identify the developer. The operations professional
can inform the developer of the error. The developer can
remedy the error and produce a latest version of the artifact.

In the present disclosure, reference is made to the accom-
panying drawings that form a part hereof, and in which is

10

15

20

25

30

35

40

45

50

55

60

65

2

shown by way of illustration how a number of examples of the
disclosure can be practiced. These examples are described in
sufficient detail to enable those of ordinary skill in the art to
practice the examples of this disclosure, and it is to be under-
stood that other examples can be used and that process, elec-
trical, and/or structural changes can be made without depart-
ing from the scope of the present disclosure.

The figures herein follow a numbering convention in which
the first digit corresponds to the drawing figure number and
the remaining digits identify an element or component in the
drawing. Elements shown in the various figures herein can be
added, exchanged, and/or eliminated so as to provide a num-
ber of additional examples of the present disclosure. In addi-
tion, the proportion and the relative scale of the elements
provided in the figures are intended to illustrate the examples
of'the present disclosure, and should not be taken in a limiting
sense. As used herein, the designators “N” and “M”, particu-
larly with respect to reference numerals in the drawings,
indicate that a number of the particular feature so designated
can be included.

FIG. 1 is a flow chart illustrating an example of a method
for instrumented file deployment according to the present
disclosure. At 102, number of changes between a first artifact
and a second artifact can be identified.

As used herein an artifact can include different types of
artifacts. For example, an artifact can be an image artifact
and/or a text artifact, among other types of artifacts. An arti-
fact can be an object and/or a structure, for instance. An
artifact can include, for example, a set of machine readable
instructions (MRI). An artifact can be an executable file, for
example. In the example used in FIG. 1, an artifact includes a
number of classes and/or a number of methods. That is, arti-
facts can be structured into classes and the classes can be
divided into methods. The classes and/or the methods can
include MRI. In a number of examples of the present disclo-
sure, the MRI included in an artifact can be written in a
runtime programming language. Examples of a runtime pro-
gramming language can include Java, .Net, PHP: Hypertext
Preprocessor, and/or Python.

An artifact can further have associated metadata. Metadata
can include a description of the artifact. For example, meta-
data of an artifact can describe the artifact by including a
name of the artifact, a size of the artifact, and/or information
regarding a history of the artifact. A history of an artifact can
include when an artifact was changed, who made the changes,
and what the changes entailed.

In the example used in FIG. 1, a first artifact and a second
artifact can represent a first version and a second version,
respectively, of a particular artifact. The first version of the
particular artifact can be created when the particular artifact is
modified. The second version of the particular artifact can be
created when the particular artifact and/or the first version of
the artifact is modified. In the example used in FIG. 1, the
second artifact can be a latest version of the particular artifact.
That is, the first artifact can be created before the second
artifact. A subsequent artifact can be modified when the state
ofanartifact is changed. An artifact can be modified when, for
example, a number of classes and/or methods are changed.
Changing a number of classes and/or a number of methods
can include adding and/or removing MRI from the number of
classes and/or the number of methods. Changing the state of
an artifact can also include adding a number of new classes
and/or methods to a number of existing classes and/or meth-
ods in the artifact. Changing the state of an artifact can also
include removing a number of existing classes and/or meth-
ods from the artifact.

US 9,311,080 B2

3

Identifying a number of changes between the first artifact
and the second artifact can include comparing the first artifact
with the second artifact and identifying the differences
between the two. For example, a number of lines of MRI can
be added to the second artifact that are not included in the first
artifact. In a number of examples of the present disclosure,
identifying a number of changes between the first artifact and
the second artifact can include comparing metadata associ-
ated with the first artifact and metadata associated with the
second artifact to identify a number of changes.

At 104, a number of class names and a number of method
names, within the second artifact where the changes reside,
can be identified. For example, when a number of lines of
MRI are added to the second artifact, it can be determined
where those MRI reside. For example, the added MRI can
reside within a specific class and/or a specific method. The
specific class and/or the specific method can have an associ-
ated class name and/or an associated method name, respec-
tively.

At 106, an instrumented file, including the identified num-
ber of class names and/or the identified number of method
names, can be created. As used herein, an instrumented file
can allow the performance of an artifact to be measured. In a
number of examples, an instrumented file can be separate
from an artifact. The instrumented file can be used to identify
anumber of MRI in an artifact. The identified number of MRI
can then be monitored.

An instrumented file can be configured to function with a
monitoring program. That is, an instrumented file can include
a number of formats and is not limited to a particular format.
The number of class names and/or method names within the
instrumented file can be used to monitor a first artifact. For
example, if an instrumented file includes a first class name,
then a monitoring program can measure a number of aspects
of an associated first class that resides within an artifact.

Monitoring an artifact can include monitoring a number of
different aspects of the artifact. For example, an artifact can
be monitored for faults, e.g., errors, that can occur during an
execution of the artifact.

The performance of an artifact can also be monitored.
Performance can include a measurement of efficiency and/or
usage of resources, among other standards. For example, a
measurement of a usage of a particular class in a second
artifact can determine the processor resources used while
executing the particular class as compared to the processor
resources used to execute other classes in the second artifact.
Furthermore, a measurement of efficiency of a particular class
in a second artifact can be computed by comparing the
resources used in a particular class in a second artifact as
compared to the resources used in the particular class in a first
artifact. For example, a particular class that is included in a
first artifact can also be included in a second artifact with a
few changes. The resources, e.g., first resources, used in
executing the particular class in the first artifact can be com-
pared to the resources, e.g., second resources, used to execute
the particular class in the second artifact. The first resources
and the second resources can be compared to determine the
efficiency of the particular class in the second artifact as
compared to the particular class in the first artifact.

A fault can be an unexpected result of the execution of MRI
in an artifact. The source of an unexpected result of the
execution of MRI can be introduced in a development phase.
For example, the source of an unexpected result of the execu-
tion can be attributed to errors in the MRI that are the result of
a poor design and/or incorrect syntax. Errors can further be
introduced during a compiling phase and/or during the execu-

10

20

30

40

45

55

60

4

tion of the MRI. An example of a fault can include a memory
leak and/or a run time exception, among others.

A fault can be discovered during development, testing,
and/or deployment of an artifact. A fault can further be dis-
covered by a developer, operations professional, and/or user,
among others. A developer that is developing the artifact can
find a solution to a fault when the developer discovers the fault
because the developer has a working knowledge of the artifact
and has access to the MRI in the artifact. However, in a
number of examples of the present disclosure, an operations
professional and/or user may not have a working knowledge
of the artifact and/or may not have access to the MRI in the
artifact and as a result may not be able to find a solution to the
fault. The ability to identify a fault, where the fault occurred,
and/or who can find a solution to the fault can be used to
improve the development of an artifact.

The performance of an artifact can further be used in an
evaluation of a developer. An evaluation of a developer can
include evaluating the performance of a developer as it relates
to the development of an artifact. For example, a fault in the
artifact that could have been prevented by a developer can
reflect negatively in the evaluation of a developer. A fault can
be prevented when the source of the fault is introduced into an
artifact by a developer and the introduction of the source
violates a policy. A policy can be associated with a number of
exemplary practices for introducing MRI into an artifact.
Other standards can be established for associating the perfor-
mance of an artifact with an evaluation of a developer.

At 108, the second artifact and the instrumented file can be
deployed together. The instrumented file can be used to iden-
tify a developer. For example, during the monitoring of the
second artifact, e.g., latest version of an artifact, a fault can be
identified. The instrumented file can be used to determine
where the fault occurred. For example, the instrumented file
can be used to determine that the fault occurred in a class
having a specific class name and/or a method having a spe-
cific method name. The class name and/or method name can
be associated with a class and/or method in the second arti-
fact. The class and/or method can be associated with a devel-
oper that developed the class and/or method. A report can be
generated for the developer, the report can include the fault
and the class name, method name, and/or developer respon-
sible for the class and/or method. The report can be generated
by an operations professional and/or a user who does not have
access to the MRI in the artifact.

FIG. 2 is a diagram illustrating an example of instrumented
file deployment according to the present disclosure. FIG. 2
illustrates the development phase 226 of a number of artifacts
222-1,222-2,222-3,...,222-N. e.g., referred to generally as
artifacts 222, an instrumentation phase 246, and an operations
phase 238.

Inthe development phase 226 a number of artifacts 222 can
be developed by a number of developers 224. Each of the
developers 224 can be associated with specific classes and/or
methods in the number of artifacts 222. As described with
respect to FIG. 1, the artifacts can be versions of a particular
artifact. For example, a first artifact 222-1 can be a first
version of the particular artifact. A second artifact 222-2 can
be a second version of the particular artifact. A third artifact
222-3 can be a third version of the particular artifact. A latest
artifact 222-N can be the latest version of the particular arti-
fact.

An instrumentation phase 246 can include the analyzing of
the number of artifacts 222 to determine a number of differ-
ences, e.g., changes, between the number of artifacts 222. The
number of changes can include, for example, a first number of
changes 228-1 between the first artifact 222-1 and the second

US 9,311,080 B2

5
artifact 222-2, a second number of changes 228-2 between the
second artifact 222-2 and the third artifact 222-3, ..., and a

latest number of changes 228-M between a next to last artifact
and the latest artifact 222-N. As used herein, the number of
changes 228-1,228-2, ..., 228-N can be referred to generally
as 228.

Each of the number of changes 228 can include a class
name and/or a method name where the changes occurred. For
example, ifa second artifact 222-2 includes MRI, not found in
the first artifact, under a first method in a first class, then the
number of changes 228-1 can include a first class name asso-
ciated with the first class and/or a first method name associ-
ated with the first method.

In the examples of FIG. 2, each of the number of changes
228 can be included in an instrumented file 230. The instru-
mented file 230 can be analogous to the instrumented file
discussed above with respect to FIG. 1. That is, the instru-
mented file can contain a record of the number of changes 228
that occurred between a number of versions of the particular
artifact. The number of changes 228 can be organized, e.g.,
formatted, in a format that can allow a monitoring program
232 to utilize the instrumented file 230.

In a number of examples of the present disclosure, only the
latest changes 228-N are included in the instrumented file.
For example, the instrumented file can include the class
names and/or the method names included in the latest
changes 228-N.

In a number of examples of the present disclosure, each of
the number of changes can be included in separate instru-
mented files (not shown). For example, the first number of
changes 228-1 can be included in a first instrumented file (not
shown), the second number of changes 228-2 can be included
in a second instrumented file (not shown), . . . and the latest
number of changes 228-M can be included in a latest instru-
mented file (not shown).

An operations phase 238 can include the deployment and/
or monitoring, e.g., referred to generally as deployment 234,
of the latest artifact 222-N and/or the instrumented file 230.
The deployment 234 can be supervised by a number of opera-
tions professionals 236.

Deployment can include, for example, testing. During
deployment an error 240 can be identified by a monitoring
program 232. The monitoring program 232 can generate a
report 242 that can include a class name, a method name,
and/or a developer, among others, that are associated with the
MRI where the error occurred. The report can be sent to an
operations professional 236. The operations professional 236
can send the report to a developer from the number of devel-
opers 224. Arrow 244 indicates the sending of the report 242
to a developer. In a number of examples of the present dis-
closure, a monitoring program 232 can send the report 242
directly to a developer (not shown).

As used herein, a monitoring program 232 can be a pro-
gram that uses an instrumented file 230 and/or a number of
instrumented files and a latest artifact 222-N to measure the
performance of the execution of the latest artifact 222-N. The
monitoring program 232 can also detect a number of errors
that can occur during the execution of the latest artifact 222-
N. The monitoring program 232 can generate a report 242 of
the errors and can distribute the report 242 to an operations
professional 236 and/or a developer 224.

FIG. 3 illustrates an example of a computing system
according to the present disclosure. The computing system
364 can utilize software, hardware, firmware, and/or logic to
perform a number of functions.

The computing system 364 can be a combination of hard-
ware and program instructions configured to perform a num-

5

10

15

20

25

30

35

40

45

50

55

60

65

6

ber of functions. The hardware, for example, can include one
or more processing resources 350, machine readable medium
(MRM) 354, memory resource 352, etc. The program instruc-
tions, e.g., machine-readable instructions (MRI) 366, can
include instructions stored on the MRM 354 to implement a
desired function, e.g., instrumented file deployment.

The processing resources 350 can be in communication
with the tangible non-transitory MRM 354 storing the set of
MRI 366 executable by one or more of the processing
resources 350, as described herein. The MRI 366 can also be
stored in remote memory managed by a server and represent
an installation package that can be downloaded, installed and
executed. The computing device 364 can include memory
resources 352, and the processing resource 350 can be
coupled to the memory resource 352.

Processing resource 350 can execute MRI 366 that can be
stored on internal or external non-transitory MRM 354. The
processing resource 350 can execute MRI 366 to perform
various functions, including the functions described with
respect to FIG. 1 and FIG. 2, among others.

The number of modules 356, 358, 360, and 362 can include
MRI 366 that when executed by the processing resource 350
can perform a number of functions. The number of modules
356,358, 360, and 362 can be sub-modules of other modules.
For example, the changes module 356 and the class and
method names module 358 can be sub-modules and/or con-
tained within a single module. Furthermore, the number of
modules 356, 358, 360, and 362 can comprise individual
modules separate and distinct from one another.

A changes module 356 can comprise MRI 366 and can be
executed by the processing resource 350 to extract a number
of changes between a number of artifacts. The number of
artifacts can include different version of a particular artifact.
The number of artifacts can be stored in a database. The
database can include a history of the development of the
particular artifact. The database can include a record of the
developers that performed the number of changes. The num-
ber of changes can be extracted from the database. The num-
ber of changes can include MRI that have been added,
removed from the particular artifact. The number of changes
can also include MRI that have been altered.

A class and method names module 358 can comprise MRI
366 and can be executed by the processing resource 350 to
identify a number of class names and/or a number of method
names that are associated with the number of changes. The
identification can be made through the database and/or by
referencing the number of artifacts.

An instrumentation module 360 can comprise MRI 366
and can be executed by the processing resource 350 to create
an instrumented file that includes the identified class names
and/or identified method names. The instrumented file can be
used, in conjunction with a latest artifact, to monitor the
performance of the execution of the latest artifact. The latest
artifact can be a latest version of the particular artifact.

A deployment module 362 can comprise MRI 354 and can
be executed by the processing resource 350 to deploy the
instrumented file and the latest artifact. The deployment can
include a testing configuration wherein the latest artifact is
tested. The testing of an artifact can include the finding of a
number of errors in the latest artifact. The deployment can
include the deployment of the latest artifact to a consumer.
The deployment can include the deployment to an operations
professional. Upon the discovery of an error in the latest
artifact, a report can be generated. The report can include a
class name, method name, and/or developer identification
that are associated with the MRI that caused the error.

US 9,311,080 B2

7

A non-transitory MRM 354, as used herein, can include
volatile and/or non-volatile memory. Volatile memory can
include memory that depends upon power to store informa-
tion, such as various types of dynamic random access
memory (DRAM) among others. Non-volatile memory can
include memory that does not depend upon power to store
information. Examples of non-volatile memory can include
solid state media such as flash memory, electrically erasable
programmable read-only memory (EEPROM), phase change
random access memory (PCRAM), magnetic memory such
as a hard disk, tape drives, floppy disk, and/or tape memory,
optical discs, digital versatile discs (DVD), Blu-ray discs
(BD), compact discs (CD), and/or a solid state drive (SSD),
etc., as well as other types of computer-readable media.

The non-transitory MRM 354 can be integral or commu-
nicatively coupled to a computing device in a wired and/or
wireless manner. For example, the non-transitory MRM 354
can be an internal memory, a portable memory, and a portable
disk, or a memory associated with another computing
resource, e.g., enabling MRIs 366 to be transferred and/or
executed across a network such as the Internet.

The MRM 354 can be in communication with the process-
ing resource 350 via a communication path 368. The com-
munication path 368 can be local or remote to a machine, e.g.,
a computer, associated with the processing resource 350.
Examples of a local communication path 368 can include an
electronic bus internal to a machine, e.g., a computer, where
the MRM 354 is one of volatile, non-volatile, fixed, and/or
removable storage medium in communication with the pro-
cessing resource 350 via the electronic bus. Examples of such
electronic buses can include Industry Standard Architecture
(ISA), Peripheral Component Interconnect (PCI), Advanced
Technology Attachment (ATA), Small Computer System
Interface (SCSI), Universal Serial Bus (USB), among other
types of electronic buses and variants thereof.

The communication path 368 can be such that the MRM
354 is remote from a processing resource, e.g., processing
resource 350, such as in a network connection between the
MRM 354 and the processing resource, e.g., processing
resource 350. That is, the communication path 368 can be a
network connection. Examples of such a network connection
can include local area network (LAN), wide area network
(WAN), personal area network (PAN), and the Internet,
among others. In such examples, the MRM 354 can be asso-
ciated with a first computing device and the processing
resource 350 can be associated with a second computing
device, e.g., a Java® server. For example, a processing
resource 350 can be in communication with a MRM 354,
wherein the MRM 354 includes a set of instructions and
wherein the processing resource 350 is designed to carry out
the set of instructions.

As used herein, “logic” is an alternative or additional pro-
cessing resource to perform a particular action and/or func-
tion, etc., described herein, which includes hardware, e.g.,
various forms of transistor logic, application specific inte-
grated circuits (ASICs), etc., as opposed to computer execut-
able instructions, e.g., software firmware, etc., stored in
memory and executable by a processor.

As used herein, “a” or “a number of” something can refer
to one or more such things. For example, “a number of wid-
gets” can refer to one or more widgets.

The above specification, examples and data provide a
description of the method and applications, and use of the
system and method of the present disclosure. Since many
examples can be made without departing from the spirit and
scope of the system and method of the present disclosure, this

5

10

20

25

30

40

45

55

60

65

8

specification merely sets forth some of the many possible
embodiment configurations and implementations.

What is claimed:
1. A method for instrumented file deployment comprising:
identifying a number of changes between a first artifact and
a second artifact;

identifying a number of class names and a number of
method names within the second artifact where the
changes reside;

creating an instrumented file from the identified number of

class names and the identified number of method names;
and

deploying the second artifact and the instrumented file

together.

2. The method of claim 1, wherein the first artifact and the
second artifact that are written in a runtime programming
language.

3. The method of claim 1, wherein deploying the second
artifact and the instrumented file further includes tracking a
performance of the number of changes through the second
artifact and the instrumented file.

4. The method of claim 3, wherein tracking the perfor-
mance of the number of changes through the second artifact
and the instrumented file further includes associating the
performance of the number of changes with a number of
developers.

5. The method of claim 3, wherein tracking the perfor-
mance of the number of changes through the second artifact
and the instrumented file further includes determining when
an error has occurred through the tracking of the performance
of the number of changes.

6. The method of claim 5, wherein tracking the perfor-
mance of the number of changes through the second artifact
and the instrumented file further includes upon an determi-
nation that the error has occurred, providing a developer, a
class, and a method that is associated with the error to an
information technology (IT) professional, wherein the IT
professional is not a developer.

7. A non-transitory machine-readable medium storing
instructions for instrumented file deployment executable by a
computer to cause the computer to:

identify a number of changes between a plurality of arti-

facts;

identify a number of class names and a number of method

names within the plurality of artifacts where the changes
took place;

create an instrumented file from the identified number of

class names and the identified number of method names;
deploy a last artifact from the plurality of artifacts and the
instrumented file; and

detect an error in the last artifact by monitoring the last

artifact and the instrumented file.

8. The medium of claim 7, wherein the plurality of artifacts
represent a plurality of versions of a particular artifact.

9. The medium of claim 8, wherein the last artifact is a
latest version of the particular artifact.

10. The medium of claim 7, wherein the instructions
executable to identify the number of changes between the
plurality of artifacts include instructions executable to iden-
tify the number of changes between succeeding versions of
the plurality of artifacts.

11. The medium of claim 9, wherein the instructions
executable to create the instrumented file from the identified
number of class names and the identified number of method
names includes instructions executable to organize the num-
ber of identified class names and the number of identified

US 9,311,080 B2

9

method names to correspond with the number of succeeding
version of the plurality of artifacts.

12. A system for instrumented file deployment, compris-
ing:

a processing resource comprising a processor in commu-
nication with a memory resource comprising a memory,
wherein the memory includes a set of instructions, and
wherein the processor is designed to execute the set of
instructions to:

identify a number of changes between a plurality of arti-
facts that are a plurality of versions of a particular arti-
fact;

identify a number of class names and a number of method
names within the plurality of artifacts where the changes
took place;

create a number of instrumented files from the identified
number of class names and the identified number of
method names;

deploy a last artifact from the plurality of artifacts and the
number of instrumented files wherein the last artifact is
a latest version of the particular artifact; and

track a performance of the number of changes through the
last artifact and the number of instrumented files and
correlate the performance with a number of developers.

13. The system of claim 12, wherein the instructions
executable to track the performance of the number of changes
includes instructions executable to associate the number of
developers with the identified number of class names and the
identified number of method names and associate the perfor-
mance of the number of changes in the identified number of
class names and the identified number of method names with
a number of individual developers.

14. The system of claim 13, wherein the instructions are
further executable to associate the performance of the number
of changes in the identified number of class names and the
identified number of method names with an evaluation of the
number of individual developers.

15

10

15. The system of claim 12, wherein the instructions
executable to create the number of instrumented files from the
identified number of class names and the identified number of
method names includes instructions executable to include in
each of the number of instrumented files the identified num-
ber of class names and the identified number of method names
of the number of changes between a succeeding version of a
particular artifact.

16. The system of claim 12, wherein the instructions are
further executable to store the number of changes between the
plurality of artifacts as metadata in the plurality of artifacts.

17. The system of claim 16, wherein the instructions
executable to identify the number of changes between the
plurality of artifacts include instructions executable to com-
pare metadata associated with each of the plurality of artifacts
with the metadata associated with a different artifact from the
plurality of artifacts.

18. They system of claim 12, wherein the instructions
executable to track the performance of the number of changes
include instructions to evaluate the performance of the num-
ber of developers as it relates to the development of the
plurality of artifacts.

19. The system of claim 12, wherein the instructions are
further executable to generate a number of reports for the
number of developers, wherein the number of reports can
include a number of faults, the number of class names, the
number of method names, and a number of responsible devel-
opers that are responsible for the number of classes and a
number of methods.

20. They system of claim 12, wherein the instructions
executable to create the number of instrumented files from the
identified number of class names and the identified number of
method names include instructions to create an instrumented
file from the number of instrumented files for each of the
number of changes between versions of the plurality of arti-
facts.

